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Abstract: When checking frequency and magnitude tables for disclosure risk, the cell 
threshold (the minimum number of observations in each cell) is the crucial statistic. In 
rules-based environments, this is a hard limit on what can or can’t be published. In 
principles-based environments, this is less important but has an impact on the 
operational effectiveness of statistical disclosure control (SDC) processes.  

Determining the appropriate threshold is an unsolved problem. Ten is a common 
threshold value for both national statistics and research outputs, but five or twenty are 
also popular. Some organisations use multiple thresholds for different data sources. 

These higher thresholds are all entirely subjective. Three is the only threshold which has 
an objective statistical foundation, but most organisations argue that this leaves little 
margin for error. Unfortunately, there is no equivalent statistical case for any number 
larger than three: ten is popular because it is popular. This is particularly the case for 
research environments, where there is no guidance. 

This paper provides the first empirical foundation for threshold selection by modelling 
alternative threshold values on both synthetic data and real datasets. The paper 
demonstrates that this is a complex question. The trade-off between risk and value is 
well-known, but we demonstrate that the protection of a higher threshold depends on 
the risk measure. There is no monotonic relation between a threshold and risk, as higher 
thresholds can increase disclosure risk in particular scenarios. The blind application of 
high-threshold rules might mask new risks. There is no unambiguous result, other than 
the simplistic ones that more observations reduces risk and higher thresholds reduce 
utility. 

Finally, the paper notes that a reconsideration of disclosure checking practices can 
reduce risk irrespective of the threshold for some risk scenarios. 

Acknowledgements 

The first draft of this paper was presented at the 2019 Eurostat/UNECE Confidentiality Workshop; 
I am grateful to participants for a number of useful comments. I am indebted to Alastair Currie at 
HM Revenue and Customs for pointing out that the paper refers to ‘disclosure risk’ when it means 
‘information recovery’, which prompted the rethinking of the paper in terms of two types of 
‘failure’. I would also like to thank Ben Derrick at UWE for commenting on the paper and the logic 
of the simulation. All errors remain my own. Full details of the results aand code are available at 
the project website http://www.fivesafes.org/SDC/10s_paper/.   

mailto:Felix.ritchie@uwe.ac.uk
http://www.fivesafes.org/SDC/10s_paper/


 

 

 

 

 

1 Introduction 

When checking frequency and magnitude tables for disclosure risk, the cell threshold 
(the minimum number of observations in each cell) is the crucial statistic. In rules-based 
environments, this is a hard limit on what can or can’t be published. In principles-based 
environments, this is the default rule which determines how conversations about 
acceptable outputs will go (see [1], for a description of the difference between rules- 
and principles-based checking schemes).  

This threshold, often the first rule in any statistical disclosure control (SDC) guide, has to 
do a lot of heavy lifting. In a rules-based world, that one number has to balance usability 
and confidentiality of outputs. This is an impossible task for a single measure, and it is 
straightforward to demonstrate how it can fail to achieve either outcome [2]. In ad-hoc 
or principles-based environments, the actual value is less important, but a poorly-chosen 
limit can still affect the efficiency of the environment and the credibility of the 
organisation setting the rules. 

The problem is: what is an appropriate threshold? Three is the only value which has an 
objective statistical basis, but many practitioners would argue that this leaves little 
margin for error, and encourages the idea that there is a statistically ‘safe’ answer. Ten 
is a popular number for both national statistics institutes (NSIs) and research outputs, 
but five comes close behind. Some organisations use multiple levels eg five for standard 
outputs, ten for outputs based on more sensitive data. One organisation uses thirty for 
research output but less for its own statistics.  

NSIs offer training to their own staff and to researchers, but rarely admit to the truth: 
that ten (or five, or twenty) is a subjective choice. I have observed training courses where 
the trainers try to defend ten as if it has some inherent, magical power. Trainers who try 
to do this invariably lose the argument, and thus their credibility, because the statistical 
case is absent. Ten is popular because (a) it is a memorable round number (b) other 
people use it. In a world of uncertainty, doing what others do can be the easiest and 
most defensible option.  

For a limit above three, the main rationale is that a higher limit reduces the likelihood of 
disclosure by differencing. In the early 2000s, some simple statistical analysis (now lost) 
was carried out using randomly generated data by the Virtual Microdata Laboratory 
(VML) team at the UK Office for National Statistics (ONS). This suggested that the 
opportunities for disclosure by differencing decrease very rapidly once cell thresholds 
rise above five or six. In the research environment managed by the VML team, ten 
therefore seemed a very safe threshold to require of research outputs, and one which 
was acceptable to researchers. 

At that time, the decision to use ten as the threshold by the VML was unusual, and not 
even common within ONS; the statistical minimum of three was preferred. Some fifteen 
years later, ten seems the most popular number applied to research outputs worldwide, 
as well as becoming more common in official statistics. 



However, there is still no statistical case for this, and it is an important question. A higher 
threshold is expected to reduce risk, but is also expected to restrict the publication of 
useful outputs. Evidence on the balance of risks is useful to statistics producers keen to 
maximise the value of data. 

Unfortunately, the issue is not amenable to analytical review. This paper instead offers 
empirical analysis of how thresholds affect risk and utility by modelling alternative 
threshold assumptions on both synthetic data and on a real dataset used by researchers. 
The aim is not to prove that any particular threshold is ‘best’ – this is not possible – but 
to provide supporting evidence for the subjective decisions that NSIs make. 

The paper demonstrates the expected conclusion that more observations reduce risk, 
and higher thresholds reduce the utility of outputs. However, the novel key findings of 
the paper are that: 

• risk is not a monotonic function of the threshold: a higher threshold can lead to 

higher risk as well as lower risk, and 

• the relationship between risk and threshold varies with the type of risk 

• non-statistical measures (in particular, clearer guidance on outputs) can reduce 

risk more effectively than higher thresholds 

There is no extant literature on this topic. The next section therefore introduces the 
conceptual framework. Section 3 describes the approach taken, and section 4 findings. 
Section 5 concludes. 

2 Conceptual review 

2.1 Strong versus weak differencing 
A threshold rule is applied to linear tabulations to prevent (a) direct re-identification of 
an individual and confidential data associated with them, and (b) indirect re-
identification through differencing. 

A single observation in a cell means that the characteristics of the cell respondent are 
unique and may be unambiguously associated with confidential information published 
using the same classification data. Two observations does not allow the general reader 
to uncover data about either respondent, but it affords each cell respondent an 
opportunity to find out something about the other (on the assumption that the 
respondents knows his or her own tabulated values). Three observations guarantees no 
confidentiality breach, on the assumption that respondents do not co-operate in the re-
identification of others. Hence, most standard textbooks (eg [3]) use three as the 
threshold for exposition: it solves the problem of direct identification with a clear, 
objective statistical justification. 

In contrast, indirect identification through differencing (exploiting different numbers of 
observations across multiple tables to infer single observations) has no theoretical 
solution. For any table A there exists a second table B such that (A-B) has single 
observations in it. NSIs invest considerable time and effort to ensure that A and B are 
not both generated, but this is not a guarantee of protection. Even if B is not published, 
how can the NSI guarantee that B could not be created by some combination of some 
other tables C, D, E, F…? A proof that a table cannot be differenced would require 



 

 

 

 

 

knowledge of every other table produced in the past, present and future on that data, 
which is clearly impossible. 

The theoretical impossibility of proving non-differencing is a straw man: no experienced 
organisation claims that as its target. However, organisations may have what could be 
described as a ‘strong differencing’ policy: 

Strong differencing: thresholds, and the choice of related tables to 
be checked, are chosen to ensure that there is no reasonable chance 

of differencing between published tables, given the likely set of 
published tables 

Strong differencing has two implications. 

First, tabular data protection is determined by history: the first table to be produced 
determines which others may be produced. This is a feasible policy for the official 
statistics produced by NSIs, where the full range of published outputs is typically planned 
in advance. However, even NSIs cannot review all possible combinations (this is 
computationally prohibitive in operational circumstances), and there remains  a 
potential risk [4]. This is much more problematic for research outputs, where table 
production is determined by the interests of individual researchers on an ad-hoc basis.  

The second problem is that strong differencing pays no attention to the value of 
published outputs. While the publication of confidential data is clearly problematic, the 
non-publication of non-confidential data due to unfounded confidentiality concerns can 
lead to public benefits being lost.  

Strong differencing relies upon the assumption that the ability to uncover a cell value 
through differencing implies a breach of confidentiality. This is clearly not true. A single 
observation in a cell may disclose information about the individual; in practice, this is 
unlikely, except in cases where extreme values are being discussed (for example, the 
highest earner in a small geographical area). 

Avoiding cell counts of one or two to prevent direct identification seems a sensible 
precaution, as such small cells are also likely to be of little value. There is also an 
argument that avoiding small numbers is important for the NSI or data holder to publicly 
demonstrate that it is not taking risks with confidentiality. In contrast, it is not at all clear 
that the same standards need to be applied to small counts arising from differencing; 
these require the difference to be noticed, as well as present. 

An alternative approach might be described as a ‘weak differencing’ policy: 

Weak differencing: thresholds, and the choice of related tables to 
be checked, are chosen to ensure that the likelihood of differenced 

values being disclosive is balanced with the likely loss to public 
benefit of not producing the tables. 



This differs from strong differencing by acknowledging three things: 

• The reasonable possibility of differencing 

• The uncertain disclosiveness of differenced tables 

• The potential loss from unrealised public benefit 

This is much more explicitly a risk-benefit model, with the risks and benefits being very 
subjective. As a result, the perspective of the decision-maker has a strong influence over 
the table-checking regime and the choice of threshold.  

For example, the author has encountered ‘default-closed’ [5] data holders who argue 
that the public benefit of any particular table in social science research is negligible; 
hence, the possibility of disclosure by differencing must be exceedingly low to be 
outweighed by the benefit. In contrast, data holders following the EDRU ethos [6, 7] 
would assume that the public benefit has already been established by the decision to 
use the data for research or official statistics, and therefore the onus is on those 
suggesting a cell be suppressed to prove the substantive case for a breach.  

2.2 The choice of threshold 
NSIs and other data holders, if they describe any policy on differencing, typically cite a 
strong differencing model as this allows them to establish credibility in protecting 
confidentiality. As noted, this is feasible for official statistics. However, for ad hoc and 
research outputs, most organisations apply weak differencing (even if default closed), 
and so the choice of threshold is highly subjective. 

In 2003 ONS’s Virtual Microdata Laboratory (VML), a secure facility for researchers, 
began using a threshold of ten instead of the three then in use. This was justified by (1) 
reference to Monte Carlo simulations of differencing (now lost) which showed the 
likelihood of difference became negligible after a threshold above 5; and (2) an analysis 
[8] which argued that this gave confidence that simple threshold checks would also deal 
with the problem of multiple respondents from the same business when dealing with 
hierarchical data. However, a primary motivation for the specific choice of ten was that 
it was high enough to avoid questions of differencing but also acceptable to researchers 
(source: personal discussion). 

The VML was not the first such research centre, but since 2003 the number of them has 
grown steadily, and almost all use a threshold higher than three. Ten appears to be the 
most popular, but we are not aware of any justification other than that this seems to be 
popular. In other words, everyone uses ten because everyone else uses it. In a world 
where data holders face considerable pressure to show that they are not unduly taking 
risks, following common practice is a sensible strategy. 

This is not universal. In just the secure facilities in UK public sector, values from three to 
thirty are used. One organisation uses five as its default, but raises the threshold to ten 
for more ‘sensitive data’. This, it seems likely, is primarily to demonstrate that some data 
is more sensitive/risky and that the organisation is taking a more active approach than 
just applying a blanket rule. 

All discussions about confidentiality protection involve a large amount of subjective 
reasoning [9, 10]. However, for the threshold rule this is complicated by the apparent 
absence of any objective statistical evidence.  



 

 

 

 

 

Two approaches may be considered to improve data holders’ confidence in their 
judgments. One is to create tables from a genuine research data source, and evaluate 
the impact alternative thresholds might have had on both disclosure and usability. The 
alternative is to carry out the same analysis but using simulated datasets to investigate 
the effect of different data profiles. 

Both of these approaches are tried here. The analyses cannot be definitive, as they are 
specific to the context (either categories chosen for the real data, or the simulation 
characteristics). Rather, the aim is to explore whether sufficiently general lessons can be 
learned from trying a range of alternative specifications. 

3 Method 

We tackle this issue by considering three cases which seem to present the most obvious 
problems. We consider two risk measures. The first is that cell counts of 1 and 2 are the 
values to avoid, irrespective of the formal threshold. The second is that cell counts below 
the threshold are not uncovered (for example, if the threshold is 5, that the difference 
between two tables is also not less than 5). The choice of measure has a significant effect 
on results. 

3.1 Case 1: differencing between a set and a subset 
In this case we assume a situation as in table 1 and 2: 

Table 1 Residents 

Age Urban Rural Total 

50-54 20 12 32 

55-59 23 13 36 

60-64 26 14 40 

65+ 28 14 42 

 97 53 150 
 

Table 2 Homeowners 

Age Urban Rural Total 

50-54 20 11 31 

55-59 23 11 34 

60-64 26 14 40 

65+ 27 11 38 

 96 47 143 
 

Tables 1 and 2: Example of differencing in subset 

There is an implicit table 2a here where many 1s and 2s occur: 

Table 2a Non-homeowners 

Age Urban Rural Total 

50-54 0 1 1 

55-59 0 2 2 

60-64 0 0 0 

65+ 1 3 4 

 1 6 7 

Table 2a: The implicit differenced table 



In this example, a threshold of 3 would lead to many 1s and 2s being generated by 
differencing. A threshold of 35 is necessary to prevent and 1s and 2s arising from 
differencing (if totals are included), but would lead to results less than the threshold 
being uncovered; in fact, for these particular tables, there is no threshold that prevents 
uncovering of values below the threshold. 

To consider this option, we: 

• Create random category allocation for Age (X) 

• Create random u/r category allocation for residents (Y) with purban > 50% 

• Create random home/rent category allocation (Z) with phomeowner > 50% 

• Tabulate X:Y and X:(Z=homeowner), correcting for the threshold (zero is 

deemed below threshold and redacted) 

• Tabulate X:(Z=renter) and count (a) number of 1s/2s in cells where the originals 

were not suppressed (b) number of cells in the differenced table which fall be-

low the threshold 

• Store number of 1s/2s, number of uncovered cells, mean observations and me-

dian observations of X:Y and X:(Z=renter)  

• Iterate N times with new random values 

The proportion of ‘bad cells’ reported below is the proportion in the differenced Table 
2a ie a score of 100% would mean that every cell in Table 2a can be recovered, and 
contains either a 1 or 2 or a value below the threshold, depending on the failure criterion. 

3.2 Case 2: Row totals revealing suppressed cells 
Consider Table 3, where a threshold of 5 has been applied, placed alongside Table 1 for 
clarity: 

Table 1 Residents 

Age Urban Rural Total 

50-54 20 12 32 

55-59 23 13 36 

60-64 26 14 40 

65+ 28 14 42 

 97 53 150 
 

Table 3 Education 

Age No degree Degree Total 

50-54 26 6 32 

55-59 29 7 36 

60-64 36 <5 36 

65+ 39 <5 39 

 130 13 143 
 

Tables 1 & 3: Example of differencing through row totals  

We assume that tables are presented with values below the threshold suppressed, and 
totals adjusted to reflect suppressions. This is considered good practice in analytical 
environments. Officials statistics are more likely to use secondary (within-table) 
suppression to maintain marginal totals. Neither solution provides protection against 
cross-table differencing, but we take the former route as (a) this offers more and simpler 
opportunities for differences to arise, and (b) this can be programmed without the need 
to define secondary suppression rules. 

Although Table 3 has the marginal totals adding up to the displayed values (and so the 
missing values cannot be reconstructed from this table), it is clear that a comparison of 
Tables 1 and 3 reveals the suppressed values. 



 

 

 

 

 

Table 3 is the worst-case scenario: If there were more than two categories in Table 4, 
then row totals would not necessarily be sufficient to expose suppressed values. 

In this case, a threshold of 3 would have avoided this problem as the low values would 
not have been removed. A threshold of 15 would also have avoided thee problem as the 
‘rural’ column in Table 1would also have been hidden. 

To consider this worst case, we  

• Use X and Z, as above 

• Create random binary category allocation for Qualifications (Q) using pdegree% 

such that one category is relatively rare 

• Tabulate X:Z and X:Q, correcting for the threshold and dropping rows in X:Z 

with no valid values (zero is below threshold) 

• Compare row totals 

• Store number of exposed cells (in both tables), mean observations and median 

observations of X:Z and X:Q 

3.3 Case 3: Direct disclosure by negation 
Finally, consider Table 4: 

 Table 4 Ethnicity 

Age Urban % white Rural % white 

50-54 20 90% 12 92% 

55-59 23 87% 13 92% 

60-64 26 85% 14 79% 

65+ 28 89% 14 93% 

 97 88% 53 89% 

Table 4: Example of differencing through complements 

As counts of humans must be integers, the complementary Table 4a can easily be 
determined: 

 Table 4a Non-white frequency 

Age Urban Rural 

50-54 2 1 

55-59 3 1 

60-64 4 3 

65+ 3 1 

 12 6 

Table 4a: The implicit low-frequency table 



In this case, it is likely that only a very high threshold would address this problem; a 
better guideline might be that, when binary conditions are tabulated, the smaller 
fraction should always be displayed. 

To consider this case, we  

• Use X and Z, as above 

• Create random binary category allocation for Ethnicity (E) using pwhite% such 

that the negative (non-white) is very rare 

• Tabulate X:W and X:(1-W), allowing for the threshold checks on the numbers 

themselves, but not on the percentages (ie X will be tested against the thresh-

old, not whether X*p% is below) 

• Record number of implicit 1s and 2s  or uncovered cells (we don’t test for zero, 

so assume these are structural for simplicity) 

• Don’t count the cells where the source number is supressed. 

For this, we could just have chosen rural or urban, so why both? The aim is to give a 
better sense of missed values: as a checker, high initial frequencies (w=urban) are less 
likely to cause concern, but if the initial frequencies are low (w=rural) this might signal 
potential problems. Running this way covers both options.  

3.4 Generating simulated data 
Data were initially generated using the following parameters 

• Number of iterations: 1,000 

• Number of observations in the dataset: 500, 1,000, 5,000 and 10,000 

• Number of X categories: (a) 10 uniformly distributed and  (b) 5 dominated by 

one category 

• Values of p% (urban): 70%, 80%, 90%, 95% 

• Values of p% (homeowner): 70%, 80%, 90%, 95% 

• Values of p% (degree): 15%, 10%, 5% 

• Values of p% (white): 90%, 95%, 99% 

• Thresholds evaluated: each of 3-15, 20, 25, 30 (16 in total) 

Initially various combinations of values were entered. However, because (as will be 
shown later) the relationship between sample characteristics and risk potential is highly 
non-linear, the program was recoded to automatically generate and store multiple 
parameters values for graphing. 

The same exercise was then carried out on three genuine datasets, with real variables 
taking the place of the simulated variables ‘urban’, ‘homeowner’, ‘degree’ and ‘white’: 



 

 

 

 

 

 Charity1 Teaching LFS2 LFS low-paid3 

Data source Published 
accounts 

Employee 
survey 

Employee 
survey 

Observations 686 19,032 4,859 

X (‘age’) ‘year’: 
2010 83 
2011 150 
2012 151 
2013 153 
2014 149 

 

‘age’: 
50-54 6,590 
55-59 6,366 
60-64 5,119 
65-69 957 

 

‘age’: 
50-54 2,091 
55-59 1,860 
60-64 850 
65-69 58 

 

Y (‘urban’) ‘big’: 49% `female’: 52% `female’: 58% 

Z (‘homeowner’) ‘survivor’: 65%   `england’: 82% `england’: 84% 

Q (‘degree’) ‘secure’: 6%   `degree’: 11% `degree’: 4% 

W (‘white’) ‘surplus’: 96% ‘white’: 97% ‘white’: 98% 
1Green et al [11]. ‘Survivor’:still trading 2015. ‘Secure’ and ‘surplus’ relate to financial viability 
2Labour Force Survey Teaching Dataset, UK Data Service dataset SN4736. Gender, ethnicity and age randomly per-
turbed; employed and age 50+ only 
3LFS data as above, restricted to subset earning under £10/hour 

 

Table 5: Datasets used 

Genuine variables were relabelled as X, Y, Z, Q and W to allow the same code as the 
simulated data to be run. The same thresholds were evaluated in the true datasets as in 
the simulated data but without multiple iterations and without different values for the 
y, z, q, or w percentages. 

The code produced, for both simulated and genuine datasets: 

• The proportion of ‘bad’ results depending on the measure (that is, either the 

the number of 1s and 2s uncovered, or the number of cells below the thresh-

old which were exposed  

• The proportion of ‘ok’ results (that is, the number of usable cells once thresh-

olds had been applied 

Note that %“bad” + %“ok” + %”suppressed but not bad” = 100%. These are stored for 
every combination of thresholds and (for simulations) values of the simulated 
characteristics. 

The program is written in Stata and can be downloaded from 
http://www.fivesafes.org/SDC/10s_paper/, along with datasets and full output files. 

http://www.fivesafes.org/SDC/10s_paper/


4 Results 

4.1 Simulated data 
The simulations produce a very large number of results: 2 types of failure (1-2, uncoverd 
cells), 2 types of data distributions (uniform/skewed), 16 thresholds, 4 X categories, 3 or 
4 other categories, and four sample sizes. This section therefore summarises key 
features rather than going though in detail. Only the uniform distribution is reported on, 
and only results for 500 and 5000 observations.  

In the tables below, ‘bad % (1/2)’ is the proportion of the original table cells that 
generate an uncovered cell of 1 or 2 observations; ‘bad % (uncovered)’ is the proportion 
of uncovered cells below the threshold; ‘usable %’ is the % of cells in the original tables 
which were not suppressed for being below the threshold. Results are depicted in 10% 
categories. Annex 1 expands the results below to the full set of thresholds. The log files 
are available at the above website.  

4.1.1 Case 1 

Table 6 shows the proportion of cells in the implied Table 2a marked ‘bad’as defined by 
uncovered 1/2s, and the proportion of times (out of 1,000 iterations of 16 cases) that 
this proportion was observed. For example, with 500 observations and a threshold of 3, 
in 5% of the 16000 cases no cells with 1s or 2s were uncovered (0% bad); with 5000 
observations and a threshold of 30, between 10.1% and 20% of the cells were uncovered 
in 4% of the 16,000 cases. A blank space means no cases occurred at that ‘bad’ 
proportion. A 0% means that less than 0.5% of combinations generated that proportion 
of errors. 

  500 observations  5000 observations 

Bad % 
(1/2) 

 Threshold  Threshold 

3 10 15 30 3 10 15 30 

0% 5% 33% 45% 52% 65% 65% 66% 78% 

10% 21% 23% 19% 19% 15% 15% 15% 15% 

20% 23% 14% 13% 14% 8% 8% 8% 4% 

30% 21% 12% 12% 11% 8% 8% 8% 3% 

40% 14% 8% 7% 4% 3% 3% 3% 1% 

50% 10% 6% 3% 0% 0% 0% 0% 0% 

60% 5% 3% 1%      

70% 2% 1% 0%      

80% 0% 0%       

90%         

99%         

100%         

 

Table 6: Bad cells (1s/2s) in case 1 

As expected, a higher number of observations reduces the proportion of ‘bad’  results 
(ie where the gap between two non-supressed cells is 1 or 2). A higher threshold also 



 

 

 

 

 

monotonically decreases the ‘bad’ proportion. However, this is not the case if the 
criterion for ‘bad’ is ‘uncovered cells below the threshold’; see Table 7. 

  500 observations  5000 observations 

Bad % 
(<threshold) 

 Threshold  Threshold 

3 10 15 30 3 10 15 30 

0% 5% 4%  1% 65% 31% 21% 20% 

10% 21% 9% 0% 6% 15% 7% 5% 6% 

20% 23% 6% 2% 10% 8% 6% 6% 5% 

30% 21% 9% 7% 17% 8% 9% 9% 6% 

40% 14% 10% 15% 28% 3% 14% 15% 6% 

50% 10% 29% 56% 38% 0% 32% 35% 29% 

60% 5% 11% 13%   0% 7% 8% 

70% 2% 9% 6%    3% 2% 

80% 0% 7% 1%    0% 1% 

90%  5% 0%    0% 3% 

99%  1%      4% 

100%  0%      12% 

 

Table 7: Bad cells (uncovered below threshold) in case 1 

While it remains true that more observations reduces the proportion of bad cells (there 
is always a higher proportion of ‘0% bad’ for 5000 obervations at each threshold), it is 
longer the case that a higher threshold reduces the number of bad cells; if anything, a 
higher threshold is more likely to lead to cells below the threshold being uncovered. 
However, it is also clear that this is highly non-linear in the proportion of bad cells being 
uncovered. A higher threshold increases the number of suppressed cells, but increases 
the chances that a differenced cell falls below the limit. This is not immediately amenable 
to modelling. 

As would be expected, the usability of the data depends significantly on the number of 
observations and the threshold. Table 8 shows the proportion of non-suppressed cells in 
the source tables (Table 1 and Table 2, excluding totals, for case 1). Thus, with 500 
observations, in 49% of the 16,000 cases no cells were suppressed whenthe threshold 
was 3; but when the threshold was raised to 30, in no cases were more than 50% of the 
cells in Table 1 or Table 2 unsuppressed. 



  500 observations  5000 observations 

Usable % 
(unsuppressed) 

 Threshold  Threshold 

3 10 15 30 3 10 15 30 

0%         

10%         

20%    1%     

30%    11%     

40%    24%     

50% 0% 43% 60% 63%    3% 

60% 3% 9% 17%     19% 

70% 12% 10% 12%     3% 

80% 10% 11% 10%    0% 0% 

90% 13% 11% 2%    2% 0% 

99% 14% 12% 0%   2% 12% 8% 

100% 49% 4%   100% 98% 86% 67% 

 

Table 8: Usable (non-suppressed) cells in case 1 

The sharp break at 50% is because the value of both the high-density and low density 
columns are being counted.  With a small number of observations, the low–density 
column is completely suppressed. With a high number of observations, it takes a very 
high threshold before even the low-density column is suppressed. Again, there is a non-
linearity in the usable proportion. 

Beyond the obvious point that more observations or lower thresholds reduce the 
number of suppressions, it is not clear how to model the relationship between 
observations, threshold and usablity. 

4.1.2 Case 2 

For this case, there are 12,000 outcomes (1000 iterations by 4Y and 3Q proportions). 
Table 9 shows the number of bad cells by 1s and 2s. 

 



 

 

 

 

 

  500 observations  5000 observations 

Bad % 
(1/2) 

 Threshold  Threshold 

3 10 15 30 3 10 15 30 

0% 22% 57% 77% 93% 100% 100% 100% 100% 

10% 16% 22% 14% 6%     

20% 12% 9% 5% 1%     

30% 11% 5% 3% 0%     

40% 12% 3% 1% 0%     

50% 13% 2% 0%      

60% 9% 1% 0%      

70% 4% 1% 0%      

80% 2% 0% 0%      

90% 0% 0%       

99%         

100%         

 

Table 9: Bad cells (1s/2s) in case 2 

Again, more observations and a higher threshold recudes the number of problematic 
cells; with 5000 observations, none of the combination of parameters leads to a 1 or 2 
being uncovered by differencing. But, as with Case 1, changing the definition of ‘bad’ to 
mean ‘cells below the threshold being exposed’ gives a very different story; see Table 
10. 

 



  500 observations  5000 observations 

Bad % 
(uncovered) 

 Threshold  Threshold 

3 10 15 30 3 10 15 30 

0% 22% 11% 33% 42% 100% 100% 94% 50% 

10% 16% 15% 25% 32%  0% 6% 1% 

20% 12% 13% 12% 17%   0% 2% 

30% 11% 9% 6% 7%   0% 2% 

40% 12% 8% 5% 2%    2% 

50% 13% 8% 6% 0%    2% 

60% 9% 8% 7% 0%    3% 

70% 4% 7% 5% 0%    8% 

80% 2% 8% 1%     12% 

90% 0% 8% 0%     13% 

99%         

100%  5% 0%     5% 

 

Table 10: Bad cells (uncovered) in case 2 

 

When considering row differences the question of bad cells (where the row totals in 
Table 1 allow the missing values in Table 3, or vice versa, to be uncovered) is more 
complex. With 500 number of observations, then a threshold of 10 performs worse than 
either a threshold of 3 or 30. On the other hand, with 5000 observations, a always 
performs worse than a lower one. As the number of observations increases, a higher 
threshold increases the chance that one or other row (but not both) has just one cell 
suppressed, creating an exploitable difference.  

The results on usable cells are also complex; see Table 11. 

 



 

 

 

 

 

  500 observations  5000 observations 

Usable % 
(unsuppressed) 

 Threshold  Threshold 

3 10 15 30 3 10 15 30 

0%         

10%         

20%         

30%         

40%    1%     

50%  11% 33% 71%    0% 

60% 0% 40% 47% 27%    6% 

70% 1% 22% 19% 0%    2% 

80% 9% 25% 1%     30% 

90% 34% 2%      11% 

99% 34% 0%    0% 6% 0% 

100% 21%    100% 100% 94% 50% 

 

Table 11: Usable (unsuppressed) cells in case 2 

Again, more observations and a lower threshold both lead to more cells being 
unsuppressed; but the non-linearity in the proportion of cells that are usable is more 
pronounced than in Case 1.  

4.1.3 Case 3 

As for Case 2, there are 12,000 outcomes (1000 iterations, 4Y and 3W proportions). Table 
12 presents results for uncovered 1s/2s. 



  500 observations  5000 observations 

Bad % 

(1/2) 

 Threshold  Threshold 

3 10 15 30 3 10 15 30 

0% 1% 3% 4% 5% 28% 28% 28% 36% 

10% 9% 18% 23% 32% 16% 16% 16% 27% 

20% 24% 27% 31% 34% 16% 16% 16% 11% 

30% 24% 23% 24% 22% 19% 19% 19% 10% 

40% 18% 14% 11% 6% 13% 13% 13% 9% 

50% 14% 9% 5% 0% 6% 6% 6% 5% 

60% 7% 5% 1% 
 

2% 2% 2% 2% 

70% 2% 1% 0% 
 

0% 0% 0% 0% 

80% 0% 0% 0% 
 

0% 0% 0% 0% 

90% 
  

 
 

    

99% 
  

 
 

    

100% 
  

 
 

    

 

Table 12: Bad cells (1s/2s) in case 3 

When considering the potential for exposure of binary complements, there appears to 
be an issue, even with a threshold of 3, when the number of observations is small. More 
interestingly, increasing the number of observations brings results for the lower 
thresholds very much in line with the higher ones across all thresholds (the differences 
between threshold are less than 0.5% ie 60 occurrences). This is not something observed 
in Cases 1 and 2.  

When considering unsuppressed cells, the situation worsens; see Table 13. 



 

 

 

 

 

  500 observations  5000 observations 

Bad % 

(uncovered) 

 Threshold  Threshold 

3 10 15 30 3 10 15 30 

0% 1% 0% 0% 1% 28% 4% 0% 1% 

10% 9% 6% 7% 9% 16% 5% 1% 5% 

20% 24% 16% 16% 16% 16% 4% 4% 2% 

30% 24% 10% 9% 10% 19% 7% 6% 0% 

40% 18% 6% 8% 18% 13% 13% 10% 1% 

50% 14% 31% 41% 45% 6% 35% 34% 23% 

60% 7% 9% 9% 
 

2% 7% 16% 16% 

70% 2% 9% 6% 
 

0% 7% 11% 8% 

80% 0% 7% 4% 
 

0% 8% 9% 9% 

90% 
 

5% 1% 
 

 7% 8% 11% 

99% 
 

1% 0% 
 

 2% 2% 7% 

100% 
 

0%  
 

 1% 1% 16% 

 

Table 13: Bad cells (uncovered) in case 3 

As in Cases 1 and 2, using uncovered cells as the measure of failure menas that a higher 
thresohld is associated with more errors; once more, there is no linear relationship 
between thresholds in terms of the proportion exposed. 

More observations does increase the number of usable cells, but there remains a large 
information loss associated with the higher threshold; see Table 14. 



  500 observations  5000 observations 

Usable % 

(unsuppressed) 

 Threshold  Threshold 

3 10 15 30 3 10 15 30 

0% 
  

 
 

    

10% 
  

 
 

    

20% 
  

 
 

    

30% 
  

 1%     

40% 
  

 13%     

50% 0% 43% 60% 86%    3% 

60% 2% 8% 15% 
 

   15% 

70% 10% 6% 7% 
 

   6% 

80% 10% 12% 13% 
 

   0% 

90% 12% 10% 6% 
 

  0%  

99% 11% 10% 0% 
 

 0% 3% 0% 

100% 55% 12%  
 

100% 100% 97% 75% 

 

Table 14: Usable (unsuppressed) cells in case 3 

Compared to Cases 1 and 2, more data are made available, as would be expected when 
the problem is the implied complement. 

4.2 Genuine data  
In cases 1 and 2, no supression with genuine data led to cells with 1s/2s uncovered. We 
therefore mostly present cases below with just the ‘uncovered’ bad results. 

4.2.1 Case 1 

Table 15 shows results for uncovered failures: 

 



 

 

 

 

 

Thres- 

hold 

LFS 
 

Low pay 
 

Charity 
 

0% 0% 13% 25% 0% 40% 50% 80% 

3 x x      x        

4 x   x    x        

5 x   x    x        

:         

6-15 x     x  x        

:         

20 x     x    x      

25 x   x        x    

30 x x            x  

 

Table 15: Bad cells (uncovered below threshold) for real data in case 1 

 

In the large dataset (19,000 observations), no cells can be recovered. In the charity 
datasets (700 observations) very few cells could be recovered until the threshold grows 
beyond 15; but from 20 onwards the recovery rate is very high for this small dataset and 
grows with the threshold. 

Of most interest is the medium-sized dataset (‘low pay’: 5,000 observations). The 
number of problematic cells increases with the threshold, but then appears to stabilise 
at a threshold of 6. However, the number of bad cells falls as the threshold climbs above 
20, which is unexpected given the simulation results. 

 Table 16 presents the usability data for case 1. 

 

 
LFS Low pay Charity 

Threshold 100% 81% 94% 100% 90% 95% 

3-20 x     x   x 

:       

25 x   x     x 

30 x x     x   

 

Table 16: Usable cells for real data in case 1 



 

Only thresholds above 20 lead to cell suppression. Note that cell suppresion is higher for 
the medium-sized dataset (low pay) than the small one (charity). This highlights that the 
charcterstics of the data can be as important for SDC as the bsolute number of 
observations. 

4.2.2 Case 2 

For Case 2 results are more complex; see Table 17. 

Thres-
hold 

LFS Low pay Charity 

0% 25% 0% 25% 0% 20% 40% 60% 80% 100% 

3 x   x   x           

4 x     x x           

5 x     x x           

6 x     x x           

7 x     x   x         

8 x     x     x       

9 x     x       x     

10 x     x         x   

11 x     x         x   

12 x     x         x   

13 x     x           x 

14 x     x           x 

15 x     x           x 

20 x     x           x 

25   x   x           x 

30   x x           x   

 

Table 17: Proportion of uncovered cells for real data in case 2 

 

For the largest dataset, a higher threshold creates problems where there were none. The 
smaller LFS dataset does not create a differencing problem at the highest or lowest 
threshold, but does at all others. For the smallest dataset, there is a positive relationship 
between the threshold and the number of uncovered rows. The number of usable cells 
is the mirror image: 



 

 

 

 

 

 LFS Low pay Charity 

Thres
hold 

94
% 

100
% 

88
% 

94
% 

100
% 

70
% 

75
% 

80
% 

85
% 

90
% 

95
% 

100
% 

3   x     x             x 

4   x   x               x 

5   x   x               x 

6   x   x               x 

7   x   x             x   

8   x   x           x     

9   x   x         x       

10   x   x       x         

11   x   x       x         

12   x   x       x         

13   x   x     x           

14   x   x     x           

15   x   x     x           

20   x   x     x           

25 x     x     x           

30 x   x     x             

 

Table 18: Proportion of usable cells for real data in case 2 

 

No cells are suppressed for the large dataset except at the highest thresholds. For the 
smaller dataset on low pay, 1 cell is suppressed thresholds above 3. The small charity 
dataset sees cells being suppressed at thresholds above 6, with one-quarter being 
suppressed at thresholds over 12. 

4.2.3 Case 3 

This case does produce some uncovered 1s and 2s: 

• No failures occur for the large dataset 

• 13% of the implicit cells generated by the medium dataset fail 

• 60% of the implicit cells generated by the medium dataset fail 



For uncovered cells there is more variation, with even the large dataset showing 
problems: 

 LFS   Low pay    Charity  
Threshold 0% 13% 25% 13% 38% 50% 63% 75% 60% 90% 100% 

3 x     x         x     

4 x     x           x   

5 x     x           x   

6 x     x             x 

7 x     x             x 

8 x     x             x 

9 x     x             x 

10 x     x             x 

11 x       x           x 

12 x       x           x 

13 x         x         x 

14 x         x         x 

15   x       x         x 

20     x     x         x 

25     x       x       x 

30     x         x   x   
  

Table 19: Proportion of uncovered cells for real data in case 3 

 

Clearly there are concerns even for the large dataset – but these occur at large 
thresholds, where the likelihood of a value being below the threshold is higher. For the 
smaller datasets, the situation is much worse; in the case of the small charity dataset, all  
of the implied complementary dataset is below the threshold when the threshold ranges 
from 6 to 25. This is highliy likely to be missed by an output checker, particularly as no 
suppression appears to be need on primary data except for the highest threshold: 

 LFS Low pay charity 

Threshold 100% 88% 100% 90% 100% 

3-25  x    x    x 

30  x x    x  
 

Table 20: Proportion of usable cells for real data in case 3 

 

4.3 Discussion 
The foregoing is an attempt to summary a very large range of statistical findings. The 
only thing that can be said with certainty are two trivial points that more observations 
and/or a higher threshold monotonically  



 

 

 

 

 

• reduces the likelihood of cells with 1 or 2 observations being exposed through 

differencing or an implied complementarity 

• increases the number of suppressed cells 

Beyond this, very little can be said definitely, and much of the findings presented above 
serve to muddy the water. 

First, if the purpose of a threshold is to prevent numbers below that threshold being 
exposed, the monotonic relationships break down. Higher thresholds can lead to more 
exposure. Even the more-observations-is-good story is no longer clear. In Table 7, for 
example, a threshold of 30 for 500 observations mens that no errors are found in only 
3% of the simulations, but that none of the simulations showed that more than 50% of 
cells were false suppressions; in contrast, with 5000 observations, 20% of simulations 
showed no problems but 12% showed that every cell in the implied table was 
problematic. Which of these is ‘better’? 

Second, the characteristics of the data are crucial to risk assessment. Table 15 showed 
that the 5000 observations in the medium dataset generated more problematic cases 
(in terms of uncovered cells) that the small dataset with under 700 observations. This 
may be down to the more even split of the ‘z’ variable in the small dataset; it is hard to 
tell. 

Third, different risk models give different outcomes. Cases 1, 2 and 3 presented quite 
different results. 

Fourth, the risk measure matters. Ensuring no 1s and 2s would seem to be the minimum 
requirement for an SDC rule. But is ‘no uncovered cell’ a good rule? If the threshold is 
20, then ensuring no implied tble are created with less than 20 units seems to be 
consistent. But if the purpose of the higher threshold is simply and explicitly to avoid 1s 
and 2s (as in [12]) then the more general risk measure is not helpful. 

Fifth, there is no sense of a natural break in the thresholds. None of the above results 
suggest that risk probabilities decline notably and consistently after a threshold of 5, or 
10, or 20, for example. 

Sixth, the proportion of usable cells, as reported above, has very limited value as a 
measure of retained utility. Guidelines such as [12] emphasise that SDC is applied to 
small cell values, which should have little or no statistical significance and so their loss is 
accetble. This may be the case in data such as social surveys, which tend to cluster 
normally around the centre; but in some fields, such as business or health data,, much 
of the interest is in the tales and the ‘small numbers’ being removed by SDC may be 
crucial for policy inference. A simple count of deleed cells cannot relfect this value. 

Finally, the real datasets showed generally fewer problems than the simulated ones. In 
particular, the uncovering of 1s and 2s (which This is particularly relevant as the 
small/medium datasets used are comparable in size to the 500/5000 observation 
simulation reported in section 4.1. Perhaps genuine data is more forgiving than 



simulations which will, by their nature, generate extreme values. If so, this has 
implications for using simulations to derive statistical guidelines. 

In summary, there is no convincing evidence from this analysis to suggest whether an 
optimal threshold exists, or even whether this can be measured effectively. We have 
found no evidence that 10 is a better threshold (in terms of risk management) than any 
other, or a worse one. In some cases here, 3 performs best and 30 performs worst; in 
other situations the case is reversed. The only thing that can be said for definite is that 
retained value (or ‘utility’) is inversely and monotonically related to the threshold; again, 
this should not be a surprise. 

Hence the choice of a threshold comes down to the institution’s comfort level, at the 
interesection between five related questions: 

1. What threshold minimises risk? 

2. What threshold generates an acceptable risk? 

3. What level of utility loss is acceptable? 

4. How will a threshold of x be perceived? 

5. Should we have multiple thresholds, and why? 

This paper has demonstrated that the answer to the first three is ‘we still don’t know, 
and it seems unlikely that we will know’. That leaves questions 4 and 5 as perhaps the 
main determinant of an institution’s threshold. This was certainly the case when the UK 
Office for National Statistics’ secure research facility adopted 10 as the minimum 
threshold in 2003, one of the earliest to do so. Prior to that point, ONS had required 
research outputs to have the same threshold of 3 as official statistics, but the research 
team felt this was too low and didn’t demonstrate how output control was being taken 
seriously. 10 was chosen as one of the researchers was already using it as his personal 
threshold; a straw poll amongst other lab users suggested this would be acceptable, and 
a rule was born. However, that rule has migrated into a ‘fact’: that 10 is a safe number 
for outputs, whereas it should be abundantly clear from the above that this is not the 
case. 

5 Conclusion 

NSIs, and other organisations allowing statistical research on confidential output, need 
to take a decision on what is an acceptable threshold, irrespective of the output 
clearance regime.  

This paper reports on an attempt to provide some evidence for the particular choice of 
a threshold. Ultimately this has been unsuccessful; the paper has demonstrated that the 
relationship between thresholds and risky cells is not linear and depends upon the type 
of differencing being guarded against, and that differencing measures may have 
irreconcilable targets. 

Some results, not presented here, suggest that as the dataset increases all problems 
disappear; this is both unsurprising and unhelpful, as the number of observations in a 
dataset is the maximum of those used in analysis, not a minimum.   

On the other hand, when applied to genuine datasets, these results provide some 
cautious optimism. The largest genuine dataset used in this analysis, with 20,000 
observations, is not particularly large by modern NSI standards, and yet it poses almost 



 

 

 

 

 

no differencing risk. Of course, increasing the number of categories would increase the 
risk potential but, as demonstrated here, the actual impact would depend on the 
threshold and the measure of ‘risk’ being used. 

One interesting issue is that Case 3 (disclosure by complementarity) seems more 
problematic than the other cases. This case is discussed in texts such as Hundepool et al 
(2010), and yet in practice it might be the one most likely to slip under the radar. 
Moreover, in this case the solution might not be statistical: better guidelines for output 
checkers and researchers (or enforcement of complete categories by automatic tools) 
might be more successful than a higher threshold. This re-iterates that SDC is not just a 
statistical problem[2]; SDC must be part of a coherent system that relfects institutional 
choices being made. 

In terms of further research, there are two areas that might be productive. The simpler 
is to improve the simulation here, perhaps considering how thresholds might interact 
with variable distributions, for example. The conceptually easier, but practically much 
harder, area of research is to exhaustive analyse genuine research publications for actual 
differencing problems. We are aware of (failed) attempts to do this, and we would 
welcome collaborations on this important. 

 

Th code and results are available online at http://www.fivesafes.org/SDC/10s_paper/, 
and the reader is invited to experiment. 
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